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We have shown that the nonlinearity of the chemical reaction may induce instability on a homogenous stable
steady state of a one-component reaction-diffusion system characterized by a cubic polynomial source term.
This results in a growth of an asymptotically approaching inhomogeneous spatial profile of secant-hyperbolic
form reminiscent of a solitary wave.
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Reaction-diffusion systems �1–4� are ubiquitous in di-
verse areas of physical, chemical, and biological sciences.
They provide useful description for a class of self-
organization phenomena under far from equilibrium condi-
tion. The examples include among others the classical prob-
lem of propagation of flame �4,5�, nerve impulse �6–8�,
chemical wave front �3,9,10�, formation �3,11� of stationary
and nonstationary spatial patterns, targets, and spirals. A ma-
jor basis of theoretical analysis of these phenomena prima-
rily rests on the linear stability of the homogenous steady
state of the dynamical system under infinitesimal spatiotem-
poral perturbation �12�. However, when the perturbation is
finite it is necessary to keep track of the spatiotemporal evo-
lution of nonlinear terms. A number of instances �13� in this
context are worth mentioning. For example, Lyapunov expo-
nents have been generalized �13� by taking care of the non-
linearity due to quadratic or cubic terms. Finite perturbations
have also been employed to introduce �14� a scale-dependent
Lyapunov exponent for measuring the degree of chaoticity
and also to coupled map lattices �15� for analyzing the non-
linear contribution to the velocity of propagation. Nonlinear
analysis plays a significant role in determining the stability
threshold in noise-induced pattern formation �16–20�, under-
standing spatiotemporal instability due to finite relaxation
time of the diffusive flux �21� and also in the Galerkin
scheme of analysis of the nature of spatial patterns �22� and
their cross over under variation in parameter space and in
some other cases.

The focal theme of the present Brief Report is to under-
stand how the spatiotemporal evolution of the nonlinear
terms makes its presence felt in questions concerning stabil-
ity of the steady states of a reaction-diffusion system. To this
end we begin by noting that diffusion always tends to ho-
mogenize a one-component system. This traditional wisdom
owes its basis to linear stability analysis �3� which shows
that infinitesimal spatiotemporal perturbation on a homog-
enous steady state cannot give rise to instability. For more
than one component system, however, diffusion may induce
Turing instability �3,23�due to an interplay between short-
range activation and long-range diffusion. The question is
can instability be generated in a one-component reaction-
diffusion system when the homogeneous steady state is per-
turbed by a finite spatiotemporal perturbation. Since the non-

linear response of the system crucially depends on the
higher-order derivatives of the source function evaluated at
the steady state in question, the dynamics of finite perturba-
tion is expected to be generically different from what is nor-
mally obtained from the corresponding linear stability analy-
sis. We address this issue with the help of a cubic polynomial
source term which has served as a paradigm for many
reaction-diffusion systems over the last several decades
�4–10�. It has been shown that nonlinearity of the reaction
may induce an instability on a homogenous stable steady
state giving rise to a stationary inhomogeneous spatial pat-
tern of sec-hyperbolic form in the long-time limit. Our nu-
merical simulation depicting the temporal development of
the perturbation corroborates our analytic results on the
reaction-induced instability and the resulting inhomogeneous
pattern.

To start with we consider a reaction-diffusion system
which describes the dynamics of field variable u�x , t�, a func-
tion of space �x� and time �t�,

�u�x,t�
�t

= D
�2u

�x2 + f�u� . �1�

D is the diffusion coefficient for the field variable. f�u� is the
source function derivable from an appropriate kinetic scheme
for chemical reaction or otherwise. The homogenous steady
states of the dynamical system are the fixed points u0 defined
by

f�u0� = 0. �2�

The spatiotemporal perturbation �u�x , t� on a homogenous
steady state u0 is given by

u�x,t� = u0 + �u�x,t� . �3�

The stability of the homogenous steady state against a finite
perturbation, in general, is determined by the derivatives of
the source term f�u� evaluated at the steady state, i.e., f��u0�,
f��u0�, and so on. The usual scheme of linearization is un-
tenable. For the present problem we look for a class of poly-
nomials of cubic variety. Our choice is guided by the follow-
ing considerations. First the cubic polynomials are well
known in the realm of autocatalytic chemical reactions
�3,9,10�. They were also employed by Zeldovich et al. �5�
and Scott �4� several decades ago for calculating the velocity
of flame propagation. Cubic polynomial serves as a standard
source term in the Hodgkin-Huxley model �6� and its variant*pcdsr@mahendra.iacs.res.in
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Fitzugh-Nagumo model �7� in impulse propagation along the
active nerve fiber. Second, our choice of cubic polynomial
puts a restriction on the number of higher-order derivative
terms determining the dynamics of perturbation �u�x , t�.
Thus the derivatives higher than the third order are all zero.
This decisive mathematical advantage renders our analysis
exactly solvable under stationary condition.

To proceed further we assume first that the homogenous
steady state u0 is stable, i.e.,

f��u0� � 0, �4�

and furthermore the explicit form of f�u� is such that

f��u0� = 0. �5�

Based on these considerations we are led to the following
equations for �u�x , t� acting on the homogenous stable state:

�

�t
�u = D

�2

�x2�u + f��u0��u +
f�
3!

�u3. �6�

In what follows we show that it is possible to realize an
inhomogeneous stationary state as a result of instability un-
der the action of finite perturbation. To this end we note that
for such a stationary state we must have

�

�t
�u = 0. �7�

Equation �6� therefore reduces to

D
�2

�x2�us = − f��us −
f�
3!

�us
3, �8�

where �us is the steady-state value of the perturbation. Ab-
breviating �us as ��x� and

−
f��u0�

D
= � and

f��u0�
3 ! D

= � , �9�

Eq. �8� takes the form

�2�

�x2 = �� − ��3. �10�

Multiplying Eq. �10� by 2�� and on integration we obtain

�d�

dx
�2

= ��2 −
�

2
�4 + A . �11�

Here A is an integration constant which can be determined
from the sum and product of the two roots of the biquadratic
equation F���=0, where

A + ��2 −
�

2
�4 � F��� . �12�

Expressing

F��� = ��1 − �2�2���1 − �2�2� , �13�

so that

A = �1�1,

� = − ��1�2 + �2�1� ,

�

2
= − �2�2, �14�

we obtain

x = �
0

� d�

	A + ��2 − �
2 �4

. �15�

By virtue of Eq. �4� and first of the relations in Eq. �9� we
have ��0. Assume furthermore that ��0. Making use of
Eqs. �12� and �13� we put Eq. �15� in the following form:

x = �
0

� d�

	�1
	�1	�1 −

�2

�1
�2�	�1 −

�2

�1
�2�

. �16�

To have Eq. �16� in a more convenient form we let 	�2

�1
�

=u and 	�2

�1
�=	u so that 	=	�1�2

�1�2
and with 	�2�1=
, we

obtain


x = �
0

u du
	�1 − u2��1 − 	2u2�

, �17�

which is a well-known elliptic integral of first kind. The final
solution can be expressed in terms of the Jacobian elliptic
function

u = sn�
x,	� . �18�

The form of asymptotic perturbation is given by

�us�x� =	�1

�2
sn�
x,	� . �19�

For a particular case of importance where A=0 with ��0
and ��0, we have from Eq. �11�

	�x = �
0

� 
�2�1 −
�

2�
�2��−1/2

d� . �20�

Substituting � �
2� �1/2�=sech � and on integration and rear-

rangement, Eq. �20� yields

��x� = �2�

�
�1/2

sech	�x . �21�

Hence the asymptotic form of finite perturbation in the long-
time limit is given by

�us�x� = 
12�− f��u0��
f��u0� �1/2

sech	�− f��u0�
D

�x . �22�

Equation �22� is a key result of this Brief Report. It shows
that a finite spatiotemporal perturbation destabilizes a ho-
mogenous stable steady state initiating the growth of an in-
homogeneous distribution of sech form in the stationary
state. A close look at this expression suggests the presence of
a third derivative of the source term as a hallmark of nonlin-
ear excitation of the system. This instability in a one-
component system is thus essentially reaction induced in
contrast to the diffusion-driven Turing instability in two-
component reaction-diffusion systems. While Turing insta-
bility is amenable to a linear stability analysis, the generic
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origin of the reaction-induced instability lies in the nonlin-
earity of the source term and is independent of the length
scale of system. We mention, in passing, that the solitary
wavelike stationary solution �22� is reminiscent of the soli-
tary wave solution �2,4,24,25� of classical integrable systems
such as Kortewegde Vries equation �KdV�, Sine-Gordon, and
also in the context of light propagation in dispersive nonlin-
ear quasiperiodic stratified media and in three-wave mixing
phenomena.

In order to illustrate the above theoretical scheme we now
assume a typical form of cubic source function as follows:

f�u� = u�u − 1��u + 1� . �23�

The homogeneous steady states are given by u0=0, +1, and
−1. u0=0 is the linearly stable state. f�u� satisfies all the
basic conditions for the reaction-driven instability. We thus
have

f��0� = − 1, f��0� = 0, and f��0� = 6. �24�

At this point it is also pertinent to note that although the form
of finite perturbation in the long-time limit attains a station-
ary inhomogeneous distribution, the analysis shed no light on
the approach toward this state. In order to address the issue
we explore the temporal development of the perturbation by
carrying out numerical simulations of the reaction-diffusion
system with source function �23�. To this end computations
were performed using the explicit Euler method on an one-
dimensional grid of 100 cells with �x=0.5 and time step
�t=0.1, under zero concentration boundary condition. The
value of the diffusion coefficient is set as D=0.5. The simu-
lations were started with spatially random perturbations
around the chosen steady state at a selected finite region of
array centering around the middle of the reaction domain.
The development of spatial profile at different times is
shown in Figs. 1�a�–1�f�. It is apparent that irregularity tends
to be erased out with time before asymptotically approaching
an inhomogeneous state of sech form �The dotted line in Fig.
1�f� represents the fitting curve.� Our numerical simulation
corroborates the analytic results.

In this Brief Report we have shown that reaction can in-
duce instability on a homogeneous stable state in a one-
component reaction-diffusion system. The origin of this in-
stability is the characteristic nonlinearity of the source term
in contrast to the diffusion-induced Turing instability in a
two-component system. The offshoot of this instability is a
growth of an inhomogeneous distribution of sec-hyperbolic
form reminiscent of a solitary wavelike structure. While Tur-

ing instability is based on the linear analysis of an infinitesi-
mal perturbation and crucially depends on the characteristic
length scale of the reaction medium, the reaction-induced
solitary instability is a result of the nonlinear analysis of a
finite spatiotemporal perturbation. Our numerical simulation
is in good agreement with the analytical result. We hope that
the instability can be realized in a systematically designed
chemical reaction comprising of autocatalytic steps. A pos-
sible extension of the nonlinear theory to two-component
systems outside the Turing space is worth pursuing for fur-
ther exploration of reaction-induced instability of the homo-
geneous stable state.
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FIG. 1. ��a�–�f�� Development of inhomogeneity around a lin-
early stable state u=0 toward attaining the profile of sech form.
Spatial profile at �a� t=10, �b� t=50, �c� t=100, �d� t=500, �e� t
=1000, and �f� t=2000 �dotted line: fitting curve of sech form�.
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